curve of constant direction - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

curve of constant direction - перевод на русский

CONVEX PLANAR SHAPE WHOSE WIDTH IS THE SAME REGARDLESS OF THE ORIENTATION OF THE CURVE
Constant Curve; Curves of constant width; Curve of constant breadth; Condiam; Roller (mathematics); Δ curve; Delta curve; Δ-biangle; Delta-biangle
  • A curve of constant width defined by an 8th-degree polynomial
  • point of minimum curvature]] of the semi-ellipse. The eccentricity of the semi-ellipse in the figure is the maximum possible for this construction.
  • arrangement of four lines]]. The boundaries of the blue body of constant width are circular arcs from four nested pairs of circles (inner circles dark red and outer circles light red).
  • An irregular [[Reuleaux polygon]]
  • Measuring the width of a [[Reuleaux triangle]] as the distance between parallel [[supporting line]]s. Because this distance does not depend on the direction of the lines, the Reuleaux triangle is a curve of constant width.
  • Rollers of constant width
  • The Reuleaux triangle rolling within a square while at all times touching all four sides

curve of constant direction      

общая лексика

кривая постоянного направления

constant curve         
кривая постоянных значений
constant curve         

математика

кривая постоянных значений

Определение

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

Википедия

Curve of constant width

In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform, the name given to these shapes by Leonhard Euler. Standard examples are the circle and the Reuleaux triangle. These curves can also be constructed using circular arcs centered at crossings of an arrangement of lines, as the involutes of certain curves, or by intersecting circles centered on a partial curve.

Every body of constant width is a convex set, its boundary crossed at most twice by any line, and if the line crosses perpendicularly it does so at both crossings, separated by the width. By Barbier's theorem, the body's perimeter is exactly π times its width, but its area depends on its shape, with the Reuleaux triangle having the smallest possible area for its width and the circle the largest. Every superset of a body of constant width includes pairs of points that are farther apart than the width, and every curve of constant width includes at least six points of extreme curvature. Although the Reuleaux triangle is not smooth, curves of constant width can always be approximated arbitrarily closely by smooth curves of the same constant width.

Cylinders with constant-width cross-section can be used as rollers to support a level surface. Another application of curves of constant width is for coinage shapes, where regular Reuleaux polygons are a common choice. The possibility that curves other than circles can have constant width makes it more complicated to check the roundness of an object.

Curves of constant width have been generalized in several ways to higher dimensions and to non-Euclidean geometry.

Как переводится curve of constant direction на Русский язык